The Generalized Multiplicative Gradient Method for A Class of Convex Symmetric Cone Optimization Problems

Renbo Zhao

Tippie College of Business University of Iowa

> ISMP Montréal July, 2024

$$\max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

$$\max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

▷ Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].

$$\max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

- ▷ Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].
- \triangleright For all $j \in [m]$, let $p_j > 0$, $a_j \in \mathbb{R}^n_+$, $a_j \neq 0$ and $\sum_{j=1}^m p_j = 1$.

$$\max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

▷ Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].

$$\triangleright \text{ For all } j \in [m], \text{ let } p_j > 0, \, a_j \in \mathbb{R}^n_+, \, a_j \neq 0 \text{ and } \sum_{j=1}^m p_j = 1.$$

 $\triangleright \ \Delta_n := \{x \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}$ is the unit simplex in \mathbb{R}^n .

$$\max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

▷ Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].

$$\triangleright \text{ For all } j \in [m], \text{ let } p_j > 0, \, a_j \in \mathbb{R}^n_+, \, a_j \neq 0 \text{ and } \sum_{j=1}^m p_j = 1.$$

- $\triangleright \ \Delta_n := \{x \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}$ is the unit simplex in \mathbb{R}^n .
- $$\begin{split} & \succ \text{ Multiplicative gradient method: } x^0 \in \mathsf{ri}\,\Delta_n \\ & x^{t+1} = x^t \circ \nabla F(x^t) \quad \Longrightarrow \quad x^{t+1}_i := x^t_i \nabla_i F(x^t), \quad \forall \, i \in [n]. \end{split}$$

$$\max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

▷ Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].

$$\triangleright \text{ For all } j \in [m], \text{ let } p_j > 0, \, a_j \in \mathbb{R}^n_+, \, a_j \neq 0 \text{ and } \sum_{j=1}^m p_j = 1.$$

$$\triangleright \ \Delta_n := \{x \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}$$
 is the unit simplex in \mathbb{R}^n .

- $$\label{eq:constraint} \begin{split} & \rhd \mbox{ Multiplicative gradient method: } x^0 \in \mbox{ri} \ \Delta_n \\ & x^{t+1} = x^t \circ \nabla F(x^t) \quad \Longrightarrow \quad x^{t+1}_i := x^t_i \nabla_i F(x^t), \quad \forall i \in [n]. \end{split} \tag{MG}$$
- ▷ (MG) does not fall under any "well-known" optimization frameworks, e.g., Newton-type method, mirror descent, etc.

$$\max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)
$$x^0 \in \operatorname{ri} \Delta_n, \qquad x^{t+1} = x^t \circ \nabla F(x^t)$$
(MG)

$$\max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

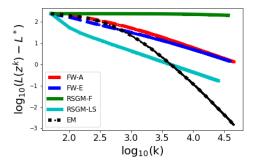
$$x^0 \in \operatorname{ri}\Delta_n, \qquad x^{t+1} = x^t \circ \nabla F(x^t)$$
 (MG)

▷ Originally proposed by information theorists in the 1970s [Ari72] based on the EM procedure.

$$\max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

$$x^0 \in \operatorname{ri}\Delta_n, \qquad x^{t+1} = x^t \circ \nabla F(x^t)$$
 (MG)

- ▷ Originally proposed by information theorists in the 1970s [Ari72] based on the EM procedure.
- \triangleright Impressive numerical performance: $x^0 = (1/n)e$



FW-A & FW-E [Dvu20; ZF20]: Frank-Wolfe (FW) method for logarithmicallyhomogeneous self-concordant barriers (with adaptive stepsize and exact line search)

RSGM-F & RSGM-LS [BBT17; LFN18]: Relatively smooth gradient method (with fixed stepsize and backtracking line search)

$$F^* = \max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

▷ However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.

$$F^* = \max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

- ▷ However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
- \triangleright Zhao [Zha23] showed that (MG) has the following convergence rate:

$$F^* - F(x^t) \le \ln(n)/t, \quad \forall t \ge 1.$$

$$F^* = \max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

- ▷ However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
- ▷ Zhao [Zha23] showed that (MG) has the following convergence rate: $F^* - F(x^t) \le \ln(n)/t, \quad \forall t \ge 1.$

$$F^* = \max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

- ▷ However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
- \triangleright Zhao [Zha23] showed that (MG) has the following convergence rate: $F^* - F(x^t) \le \ln(n)/t, \quad \forall t \ge 1.$

The proof is relatively short, and is based on basic convex analysis.

 \triangleright But immediately some questions arose:

$$F^* = \max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

- ▷ However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
- \triangleright Zhao [Zha23] showed that (MG) has the following convergence rate: $F^* - F(x^t) \le \ln(n)/t, \quad \forall t \ge 1.$

- \triangleright But immediately some questions arose:
 - Why does (MG) work for PET?

$$F^* = \max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

- ▷ However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
- ▷ Zhao [Zha23] showed that (MG) has the following convergence rate: $F^* - F(x^t) \le \ln(n)/t, \quad \forall t \ge 1.$

- ▷ But immediately some questions arose:
 - Why does (MG) work for PET?
 - What are the essential structures of the problem the drive the success of (MG)? Is there a general problem class that (MG) works well?

$$F^* = \max_{x \in \Delta_n} \left\{ F(x) := \sum_{j=1}^m p_j \ln(a_j^\top x) \right\}$$
(PET)

- ▷ However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
- ▷ Zhao [Zha23] showed that (MG) has the following convergence rate: $F^* - F(x^t) < \ln(n)/t, \quad \forall t > 1.$

- ▷ But immediately some questions arose:
 - Why does (MG) work for PET?
 - What are the essential structures of the problem the drive the success of (MG)? Is there a general problem class that (MG) works well?
 - And what is the interaction between the complexity of (MG) and the problem structure?

▷ We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.

- ▷ We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.
- \triangleright To facilitate understanding, we first show our results when they are specialized to the following applications:
 - D-optimal design
 - Quantum state tomography
 - Semidefinite relaxation of Boolean QP

- ▷ We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.
- $\triangleright~$ To facilitate understanding, we first show our results when they are specialized to the following applications:
 - D-optimal design
 - Quantum state tomography
 - Semidefinite relaxation of Boolean QP
- \triangleright In all of these applications, the objective functions involve "ln(·)", and hence are neither Lipschitz nor smooth (i.e., have Lipschitz gradients) on the feasible sets.

- ▷ We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.
- $\triangleright~$ To facilitate understanding, we first show our results when they are specialized to the following applications:
 - D-optimal design
 - Quantum state tomography
 - Semidefinite relaxation of Boolean QP
- \triangleright In all of these applications, the objective functions involve "ln(·)", and hence are neither Lipschitz nor smooth (i.e., have Lipschitz gradients) on the feasible sets.
- ▷ Certain first-order methods for these applications have been developed recently [Nes11; BBT17; LFN18; Dvu20; ZF20] — our generalized MG method contributes to this line of research from a different viewpoint.

D-Optimal Design (D-OPT)

$\max_{x} F(x) := \ln \det \left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top} \right) \quad \text{s. t.} \quad x \in \Delta_{n}$ (D-OPT)

$$\max_{x} F(x) := \ln \det \left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top} \right) \quad \text{s. t.} \quad x \in \Delta_{n}$$
 (D-OPT)

 $\triangleright a_1, \ldots, a_n \in \mathbb{R}^m$ whose linear span is \mathbb{R}^m .

$$\max_{x} F(x) := \ln \det \left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top} \right) \quad \text{s. t.} \quad x \in \Delta_{n}$$
(D-OPT)

- $\triangleright a_1, \ldots, a_n \in \mathbb{R}^m$ whose linear span is \mathbb{R}^m .
- ▷ In statistics, D-OPT corresponds to maximizing the the determinant of the Fisher information matrix [Fed72].

$$\max_{x} F(x) := \ln \det \left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top} \right) \quad \text{s. t.} \quad x \in \Delta_{n}$$
(D-OPT)

- $\triangleright a_1, \ldots, a_n \in \mathbb{R}^m$ whose linear span is \mathbb{R}^m .
- ▷ In statistics, D-OPT corresponds to maximizing the the determinant of the Fisher information matrix [Fed72].
- ▷ In computational geometry, D-OPT arises as a Lagrangian dual problem of the minimum volume enclosing ellipsoid problem [Tod16].

$$\max_{x} F(x) := \ln \det \left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top} \right) \quad \text{s. t.} \quad x \in \Delta_{n}$$
 (D-OPT)

- $\triangleright a_1, \ldots, a_n \in \mathbb{R}^m$ whose linear span is \mathbb{R}^m .
- ▷ In statistics, D-OPT corresponds to maximizing the determinant of the Fisher information matrix [Fed72].
- ▷ In computational geometry, D-OPT arises as a Lagrangian dual problem of the minimum volume enclosing ellipsoid problem [Tod16].

 $\triangleright \text{ MG method: } \left| x^0 \in \mathsf{ri}\,\Delta_n, \quad x^{t+1} = x^t \circ (m^{-1}\nabla F(x^t)) \right|$

$$\max_X F(X) := m^{-1} \sum_{j=1}^q n_j \ln(\langle X, a_j a_j^H \rangle)$$

s.t. $X \in \mathbb{H}^n_+$, $\operatorname{tr}(X) = 1$ (QST)

$$\max_X F(X) := m^{-1} \sum_{j=1}^q n_j \ln(\langle X, a_j a_j^H \rangle)$$

s.t. $X \in \mathbb{H}^n_+$, $\operatorname{tr}(X) = 1$ (QST)

▷ In quantum physics, this problem aims to reconstruct the state of a quantum system using the measured output of particles [Hra04].

$$\max_X F(X) := m^{-1} \sum_{j=1}^q n_j \ln(\langle X, a_j a_j^H \rangle)$$

s.t. $X \in \mathbb{H}^n_+$, $\operatorname{tr}(X) = 1$ (QST)

▷ In quantum physics, this problem aims to reconstruct the state of a quantum system using the measured output of particles [Hra04].

$$\triangleright a_1, \ldots, a_q \in \mathbb{C}^n, \sum_{j=1}^q a_j a_j^H = I_n \text{ and } \sum_{j=1}^q n_j = m.$$

$$\max_X F(X) := m^{-1} \sum_{j=1}^q n_j \ln(\langle X, a_j a_j^H \rangle)$$

s.t. $X \in \mathbb{H}^n_+$, $\operatorname{tr}(X) = 1$ (QST)

▷ In quantum physics, this problem aims to reconstruct the state of a quantum system using the measured output of particles [Hra04].

$$\triangleright a_1, \dots, a_q \in \mathbb{C}^n, \sum_{j=1}^q a_j a_j^H = I_n \text{ and } \sum_{j=1}^q n_j = m.$$

 $\triangleright \mathbb{H}^n_+$ denotes the cone of $n \times n$ complex Hermitian PSD matrices.

$$\max_X F(X) := m^{-1} \sum_{j=1}^q n_j \ln(\langle X, a_j a_j^H \rangle)$$

s.t. $X \in \mathbb{H}^n_+$, $\operatorname{tr}(X) = 1$ (QST)

▷ In quantum physics, this problem aims to reconstruct the state of a quantum system using the measured output of particles [Hra04].

$$\triangleright a_1, \dots, a_q \in \mathbb{C}^n, \sum_{j=1}^q a_j a_j^H = I_n \text{ and } \sum_{j=1}^q n_j = m.$$

 \triangleright \mathbb{H}^n_+ denotes the cone of $n \times n$ complex Hermitian PSD matrices.

 \triangleright (Generalized) MG method: $X^0 \succ 0$, $tr(X^0) = 1$,

$$\begin{split} \hat{X}^{t+1} &= \exp\{\ln(X^t) + \ln(\nabla F(X^t))\}\\ X^{t+1} &= \hat{X}^{t+1} / \operatorname{tr}(\hat{X}^{t+1}) \end{split}$$

(For any
$$X = \sum_{i=1}^{n} \lambda_i u_i u_i^H \succ 0$$
, $\ln(X) := \ln(\lambda_i) u_i u_i^H$.)

 \triangleright The Boolean QP (BQP): $q^* := \max_{x \in \{\pm 1\}^n} x^\top A x$ for some $A \succ 0$.

 \triangleright The Boolean QP (BQP): $q^* := \max_{x \in \{\pm 1\}^n} x^\top A x$ for some $A \succ 0$.

 \triangleright Nesterov [Nes98] showed that the semidefinite relaxation

$$s^* := \min_y \langle e, y \rangle$$
 s.t. $\operatorname{Diag}(y) \succeq A$ (SDP)

provides a $(2/\pi)$ -approximation of the BQP.

 $\triangleright \text{ The Boolean QP (BQP): } q^* := \max_{x \in \{\pm 1\}^n} x^\top Ax \text{ for some } A \succ 0.$

 $\,\triangleright\,$ Nesterov [Nes98] showed that the semidefinite relaxation

$$s^* := \min_y \langle e, y \rangle$$
 s.t. $\operatorname{Diag}(y) \succeq A$ (SDP)

provides a $(2/\pi)$ -approximation of the BQP.

ð

▷ Nesterov [Nes11] later showed that (SDP) above can be equivalently written in the dual form:

$$\max_{X} \quad F(X) := \ln \left(\sum_{i=1}^{n} \langle X, r_{i} r_{i}^{\top} \rangle^{1/2} \right)^{2}$$

s.t. $X \in \mathbb{S}_{+}^{n}, \text{ tr}(X) = 1$ (RBQP)

where $A = R^{\top}R$ and $R := [r_1 \cdots r_n]$, and \mathbb{S}^n_+ denotes the cone of $n \times n$ real symmetric PSD matrices.

 $\triangleright \text{ The Boolean QP (BQP): } q^* := \max_{x \in \{\pm 1\}^n} x^\top Ax \text{ for some } A \succ 0.$

 \triangleright Nesterov [Nes98] showed that the semidefinite relaxation

$$s^* := \min_y \langle e, y \rangle$$
 s.t. $\operatorname{Diag}(y) \succeq A$ (SDP)

provides a $(2/\pi)$ -approximation of the BQP.

▷ Nesterov [Nes11] later showed that (SDP) above can be equivalently written in the dual form:

$$\max_{X} \quad F(X) := \ln\left(\sum_{i=1}^{n} \langle X, r_{i} r_{i}^{\top} \rangle^{1/2}\right)^{2}$$

s.t. $X \in \mathbb{S}_{+}^{n}, \text{ tr}(X) = 1$ (RBQP)

where $A = R^{\top}R$ and $R := [r_1 \cdots r_n]$, and \mathbb{S}^n_+ denotes the cone of $n \times n$ real symmetric PSD matrices.

 $\vartriangleright \text{ MG method: } X^0 \succ 0, \, \mathrm{tr}(X^0) = 1,$

$$\hat{X}^{t+1} = \exp\{\ln(X^t) + \ln(\nabla F(X^t))\}$$
$$X^{t+1} = \hat{X}^{t+1} / \operatorname{tr}(\hat{X}^{t+1})$$

Comparison of Computational Guarantees

RSGM [BBT17; LFN18]: Relatively smooth gradient method
FW [Dvu20; ZF20]: FW method for logarithmically-homogeneous self-concordant barriers
MG: (Generalized) Multiplicative gradient method (this work)
BSG [Nes11]: Barrier subgradient method

Table 1: Comparison of operations complexities (with $x^0 = (1/n)e$ or $X^0 = (1/n)I_n$)

	RSGM	FW	MG	BSG	Regime
PET	$O\left(\frac{mn^2}{\varepsilon}\ln\left(\frac{\ln(n)}{\varepsilon}\right)\right)$	$O\left(\frac{m^2n}{\varepsilon}\right)$	$O\left(\frac{mn\ln(n)}{\varepsilon}\right)$		$n = O(\exp(m))$
D-OPT	$O\left(\frac{mn^2}{\varepsilon}\ln\left(\frac{\ln(n/m)}{\varepsilon}\right)\right)$	$O\left(\frac{m^2n}{\varepsilon}\right)$	$O\left(\frac{m^2 n \ln(n)}{\varepsilon}\right)^{\dagger}$	$O\left(\frac{m^2 n^2}{\varepsilon^2} \ln^2\left(\frac{n}{\varepsilon}\right)\right)$	
QST	x?	$O\left(\frac{m^2n^2}{\varepsilon}\right)$	$O\left(\frac{mn^2\ln(n)}{\varepsilon}\right)^{\ddagger}$	$O\left(\frac{mn^3}{\varepsilon^2}\ln^2\left(\frac{n}{\varepsilon}\right)\right)$	$n = O(\exp(m))$
RBQP	x?	x?	$O\left(\frac{n^3\ln(n)}{\varepsilon}\right)$	$O\left(\frac{n^4}{\varepsilon^2}\ln^2\left(\frac{n}{\varepsilon}\right)\right)$	

† [Coh19] ‡ [LCL21]

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

▷ Let Γ be a regular cone in a (finite-dimensional) real vector space \mathbb{Y} , and $f: \Gamma \to \mathbb{R} \cup \{-\infty\}$ is a closed and strictly concave function:

• int $\Gamma \subseteq \text{dom } f \subseteq \Gamma \setminus \{0\}$, and dom f invariant under positive scaling.

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

▷ Let Γ be a regular cone in a (finite-dimensional) real vector space \mathbb{Y} , and $f: \Gamma \to \mathbb{R} \cup \{-\infty\}$ is a closed and strictly concave function:

- int $\Gamma \subseteq \text{dom } f \subseteq \Gamma \setminus \{0\}$, and dom f invariant under positive scaling.
- f is C^3 and θ -logarithmically-homogeneous (θ -LH) on int Γ :

 $f(ty)=f(y)+\ln t,\quad\forall\,y\in {\rm int}\,\Gamma,\;\forall\,t>0.$

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

▷ Let Γ be a regular cone in a (finite-dimensional) real vector space \mathbb{Y} , and $f: \Gamma \to \mathbb{R} \cup \{-\infty\}$ is a closed and strictly concave function:

- int $\Gamma \subseteq \text{dom } f \subseteq \Gamma \setminus \{0\}$, and dom f invariant under positive scaling.
- f is C^3 and θ -logarithmically-homogeneous (θ -LH) on int Γ :

 $f(ty)=f(y)+\ln t,\quad\forall\,y\in {\rm int}\,\Gamma,\;\forall\,t>0.$

• ∇f : int $\Gamma \mapsto$ int Γ^*

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

▷ Let Γ be a regular cone in a (finite-dimensional) real vector space \mathbb{Y} , and $f: \Gamma \to \mathbb{R} \cup \{-\infty\}$ is a closed and strictly concave function:

- int $\Gamma \subseteq \text{dom } f \subseteq \Gamma \setminus \{0\}$, and dom f invariant under positive scaling.
- f is C^3 and θ -logarithmically-homogeneous (θ -LH) on int Γ :

$$f(ty) = f(y) + \ln t, \quad \forall y \in \operatorname{int} \Gamma, \ \forall t > 0.$$

• $\nabla f: \operatorname{int} \Gamma \mapsto \operatorname{int} \Gamma^*$

 $\triangleright \ \mathcal{K} \subseteq \mathbb{V}$ is a symmetric cone, where \mathbb{V} is a real inner-product space:

- self-dual: $\mathcal{K} = \mathcal{K}^*$
- homogeneous: for all $x, y \in int \mathcal{K}$, there exists a (linear) automorphism T on \mathcal{K} such that $\mathsf{T} x = y$

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

 \triangleright For $x \in \mathbb{V}$, tr(x) denotes the "trace" of x:

•
$$\mathbb{V} = \mathbb{R}^n$$
: $\mathcal{K} = \mathbb{R}^n_+$, $\operatorname{tr}(x) := \sum_{i=1}^n x_i$

•
$$\mathbb{V} = \mathbb{S}^n$$
: $\mathcal{K} = \mathbb{S}^n_+$, $\operatorname{tr}(X) := \sum_{i=1}^n \lambda_i(X)$

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

 \triangleright For $x \in \mathbb{V}$, tr(x) denotes the "trace" of x:

•
$$\mathbb{V} = \mathbb{R}^n$$
: $\mathcal{K} = \mathbb{R}^n_+$, $\operatorname{tr}(x) := \sum_{i=1}^n x_i$
• $\mathbb{V} = \mathbb{S}^n$: $\mathcal{K} = \mathbb{S}^n_+$, $\operatorname{tr}(X) := \sum_{i=1}^n \lambda_i(X)$

 $\triangleright A : \mathbb{V} \to \mathbb{Y}$ is a linear operator such that

 $A(\operatorname{int} \mathcal{K}) \subseteq \operatorname{int} \Gamma$ and $A^*(\operatorname{int} \Gamma) \subseteq \operatorname{int} \mathcal{K}$.

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

 \triangleright For $x \in \mathbb{V}$, tr(x) denotes the "trace" of x:

•
$$\mathbb{V} = \mathbb{R}^n$$
: $\mathcal{K} = \mathbb{R}^n_+$, $\operatorname{tr}(x) := \sum_{i=1}^n x_i$
• $\mathbb{V} = \mathbb{S}^n$: $\mathcal{K} = \mathbb{S}^n_+$, $\operatorname{tr}(X) := \sum_{i=1}^n \lambda_i(X)$

 $\,\triangleright\,$ $A:\mathbb{V}\to\mathbb{Y}$ is a linear operator such that

 $A(\operatorname{int} \mathcal{K}) \subseteq \operatorname{int} \Gamma$ and $A^*(\operatorname{int} \Gamma) \subseteq \operatorname{int} \mathcal{K}$.

 \triangleright Under these conditions, we know that $\nabla F : \operatorname{int} \mathcal{K} \to \operatorname{int} \mathcal{K}$.

$$\max F(x) := f(\mathsf{A}x)$$

s.t. $x \in \mathcal{C} := \{x \in \mathcal{K} : \operatorname{tr}(x) = 1\}$ (P)

 \triangleright For $x \in \mathbb{V}$, tr(x) denotes the "trace" of x:

•
$$\mathbb{V} = \mathbb{R}^n$$
: $\mathcal{K} = \mathbb{R}^n_+$, $\operatorname{tr}(x) := \sum_{i=1}^n x_i$
• $\mathbb{V} = \mathbb{S}^n$: $\mathcal{K} = \mathbb{S}^n_+$, $\operatorname{tr}(X) := \sum_{i=1}^n \lambda_i(X)$

 $\,\vartriangleright\, A: \mathbb{V} \to \mathbb{Y}$ is a linear operator such that

 $A(\operatorname{int} \mathcal{K}) \subseteq \operatorname{int} \Gamma$ and $A^*(\operatorname{int} \Gamma) \subseteq \operatorname{int} \mathcal{K}$.

- \triangleright Under these conditions, we know that $\nabla F : \operatorname{int} \mathcal{K} \to \operatorname{int} \mathcal{K}$.
- \triangleright Finally, we require F to be *log-gradient convex* (more details later).

 $\,\triangleright\,$ We call (\mathbb{V},\circ) a Jordan algebra (over $\mathbb{R})$ with rank n if

- $\,\vartriangleright\,$ We call (\mathbb{V},\circ) a Jordan algebra (over $\mathbb{R})$ with rank n if
 - \mathbb{V} is a real vector space

 \triangleright We call (\mathbb{V}, \circ) a Jordan algebra (over \mathbb{R}) with rank n if

- \mathbb{V} is a real vector space
- $\circ: \mathbb{V} \times \mathbb{V} \to \mathbb{V}$ is a *bilinear* map on \mathbb{V} such that

 $x \circ y = y \circ x, \quad x^2 \circ (x \circ y) = x \circ (x^2 \circ y), \quad \forall x, y \in \mathbb{V}.$

 $\,\triangleright\,$ We call (\mathbb{V},\circ) a Jordan algebra (over $\mathbb{R})$ with rank n if

• \mathbb{V} is a real vector space

•
$$\circ: \mathbb{V} \times \mathbb{V} \to \mathbb{V}$$
 is a *bilinear* map on \mathbb{V} such that

$$x \circ y = y \circ x, \quad x^2 \circ (x \circ y) = x \circ (x^2 \circ y), \quad \forall x, y \in \mathbb{V}.$$

• \mathbb{V} has an identity element e (so that $x \circ e = e \circ x = x$).

 \triangleright Each $x \in \mathbb{V}$ has *n* eigenvalues $\{\lambda_i(x)\}_{i=1}^n$, and

$$\operatorname{tr}(x) := \sum_{i=1}^{n} \lambda_i(x) \in \mathbb{R}.$$

 $\,\vartriangleright\,$ We call (\mathbb{V},\circ) a Jordan algebra (over $\mathbb{R})$ with rank n if

• V is a real vector space

•
$$\circ : \mathbb{V} \times \mathbb{V} \to \mathbb{V}$$
 is a *bilinear* map on \mathbb{V} such that

$$x \circ y = y \circ x, \quad x^2 \circ (x \circ y) = x \circ (x^2 \circ y), \quad \forall x, y \in \mathbb{V}.$$

- \mathbb{V} has an identity element e (so that $x \circ e = e \circ x = x$).
- \triangleright Each $x \in \mathbb{V}$ has *n* eigenvalues $\{\lambda_i(x)\}_{i=1}^n$, and

$$\operatorname{tr}(x) := \sum_{i=1}^{n} \lambda_i(x) \in \mathbb{R}.$$

▷ We call (\mathbb{V}, \circ) Euclidean if $\operatorname{tr}(x^2) > 0$ for $x \neq 0$, and we can define an inner product $\langle x, y \rangle := \operatorname{tr}(x \circ y)$ that is associative:

$$\langle x\circ y,z\rangle:=\langle x,y\circ z\rangle,\quad\forall\, x,y,z\in\mathbb{V}.$$

 \triangleright Any x in a EJA V has a spectral decomposition $x = \sum_{i=1}^{n} \lambda_i(x) q_i(x)$:

- the eigenvalues $\{\lambda_i(x)\}_{i=1}^n$ are real
- $\{q_i(x)\}_{i=1}^n \subseteq \mathbb{V}$ is called a Jordan frame.

- \triangleright Any x in a EJA V has a spectral decomposition $x = \sum_{i=1}^{n} \lambda_i(x) q_i(x)$:
 - the eigenvalues $\{\lambda_i(x)\}_{i=1}^n$ are real
 - $\{q_i(x)\}_{i=1}^n \subseteq \mathbb{V}$ is called a Jordan frame.
- $\,\triangleright\,$ A Jordan frame $\{q_i\}_{i=1}^n\subseteq\mathbb{V}$ satisfy
 - (Complete) $\sum_{i=1}^{n} q_i = e$
 - (Orthogonal) $q_i \circ q_j = 0, \forall i \neq j, i, j \in [n],$
 - (Primitive Idempotents) $q_i^2 = q_i$ and $\operatorname{tr}(q_i) = 1, \forall i \in [n]$

- \triangleright Any x in a EJA V has a spectral decomposition $x = \sum_{i=1}^{n} \lambda_i(x) q_i(x)$:
 - the eigenvalues $\{\lambda_i(x)\}_{i=1}^n$ are real
 - $\{q_i(x)\}_{i=1}^n \subseteq \mathbb{V}$ is called a Jordan frame.
- $\,\triangleright\,$ A Jordan frame $\{q_i\}_{i=1}^n\subseteq\mathbb{V}$ satisfy
 - (Complete) $\sum_{i=1}^{n} q_i = e$
 - (Orthogonal) $q_i \circ q_j = 0, \forall i \neq j, i, j \in [n],$
 - (Primitive Idempotents) $q_i^2 = q_i$ and $\operatorname{tr}(q_i) = 1, \forall i \in [n]$
- \triangleright For any univariate function $f, f(x) := \sum_{i=1}^{n} f(\lambda_i(x))q_i(x)$ for $x \in \mathbb{V}$.

- \triangleright Any x in a EJA V has a spectral decomposition $x = \sum_{i=1}^{n} \lambda_i(x) q_i(x)$:
 - the eigenvalues $\{\lambda_i(x)\}_{i=1}^n$ are real
 - $\{q_i(x)\}_{i=1}^n \subseteq \mathbb{V}$ is called a Jordan frame.
- $\,\triangleright\,$ A Jordan frame $\{q_i\}_{i=1}^n\subseteq\mathbb{V}$ satisfy
 - (Complete) $\sum_{i=1}^{n} q_i = e$
 - (Orthogonal) $q_i \circ q_j = 0, \forall i \neq j, i, j \in [n],$
 - (Primitive Idempotents) $q_i^2 = q_i$ and $\operatorname{tr}(q_i) = 1, \forall i \in [n]$
- \triangleright For any univariate function $f, f(x) := \sum_{i=1}^{n} f(\lambda_i(x))q_i(x)$ for $x \in \mathbb{V}$.

Connection between symmetric cones and EJA:

- \triangleright Any x in a EJA V has a spectral decomposition $x = \sum_{i=1}^{n} \lambda_i(x) q_i(x)$:
 - the eigenvalues $\{\lambda_i(x)\}_{i=1}^n$ are real
 - $\{q_i(x)\}_{i=1}^n \subseteq \mathbb{V}$ is called a *Jordan frame*.
- $\,\triangleright\,$ A Jordan frame $\{q_i\}_{i=1}^n\subseteq\mathbb{V}$ satisfy
 - (Complete) $\sum_{i=1}^{n} q_i = e$
 - (Orthogonal) $q_i \circ q_j = 0, \forall i \neq j, i, j \in [n],$
 - (Primitive Idempotents) $q_i^2 = q_i$ and $\operatorname{tr}(q_i) = 1, \forall i \in [n]$
- \triangleright For any univariate function $f, f(x) := \sum_{i=1}^{n} f(\lambda_i(x))q_i(x)$ for $x \in \mathbb{V}$.

Connection between symmetric cones and EJA:

For each symmetric cone \mathcal{K} , there exists a unique EJA \mathbb{V} such that $\mathcal{K} := \{x^2 : x \in \mathbb{V}\}$ and $\triangleright \ x \in \mathcal{K} \iff \lambda_1(x), \dots, \lambda_n(x) \ge 0$ $\triangleright \ x \in \operatorname{int} \mathcal{K} \iff \lambda_1(x), \dots, \lambda_n(x) > 0$

$$\begin{array}{ll} {\rm Input}: & x^0 \in {\sf ri}\,\mathcal{C} \ (:= {\sf int}\,\mathcal{K} \cap \{x:{\rm tr}(x)=1\}) \\ {\rm Iterate}: & \hat{x}^{t+1}:= \exp\{\ln(x^t) + \ln(\theta^{-1}\nabla F(x^t))\}, \\ & x^{t+1}:= \hat{x}^{t+1}/{\rm tr}(\hat{x}^{t+1}). \\ {\rm Output}: & \bar{x}^T:= (1/T)\sum_{t=0}^{T-1} x^t \end{array}$$

(GMG)

$$\begin{array}{lll} \text{Input}: & x^{0} \in \mathsf{ri}\,\mathcal{C} \ (:= \mathsf{int}\,\mathcal{K} \cap \{x: \mathrm{tr}(x) = 1\}) \\ \text{Iterate}: & \hat{x}^{t+1} := \exp\{\ln(x^{t}) + \ln(\theta^{-1}\nabla F(x^{t}))\}, \\ & x^{t+1} := \hat{x}^{t+1}/\mathrm{tr}(\hat{x}^{t+1}). \\ \text{Output}: & \bar{x}^{T} := (1/T)\sum_{t=0}^{T-1} x^{t} \end{array}$$

(GMG)

$$For \ x = \sum_{i=1}^{n} \lambda_i(x) q_i(x) \in \operatorname{int} \mathcal{K}:$$
$$\exp(x) = \sum_{i=1}^{n} \exp(\lambda_i(x)) q_i(x), \quad \ln(x) = \sum_{i=1}^{n} \ln(\lambda_i(x)) q_i(x),$$

$$\begin{array}{lll} \text{Input}: & x^{0} \in \mathsf{ri}\,\mathcal{C} \ (:= \mathsf{int}\,\mathcal{K} \cap \{x: \mathrm{tr}(x) = 1\}) \\ \text{Iterate}: & \hat{x}^{t+1} := \exp\{\ln(x^{t}) + \ln(\theta^{-1}\nabla F(x^{t}))\}, \\ & x^{t+1} := \hat{x}^{t+1}/\mathrm{tr}(\hat{x}^{t+1}). \\ \text{Output}: & \bar{x}^{T} := (1/T)\sum_{t=0}^{T-1} x^{t} \end{array}$$

(GMG)

$$For \ x = \sum_{i=1}^{n} \lambda_i(x) q_i(x) \in \text{int } \mathcal{K}: \\ \exp(x) = \sum_{i=1}^{n} \exp(\lambda_i(x)) q_i(x), \quad \ln(x) = \sum_{i=1}^{n} \ln(\lambda_i(x)) q_i(x),$$

 $\triangleright \text{ If } x^0 \in \mathsf{ri}\,\mathcal{C}, \text{ then } \{x^t\}_{t \ge 0} \subseteq \mathsf{ri}\,\mathcal{C}.$

(GMG)

$$For \ x = \sum_{i=1}^{n} \lambda_i(x) q_i(x) \in \operatorname{int} \mathcal{K}: \\ \exp(x) = \sum_{i=1}^{n} \exp(\lambda_i(x)) q_i(x), \quad \ln(x) = \sum_{i=1}^{n} \ln(\lambda_i(x)) q_i(x), \\ For \ x^0 \in \operatorname{ri} \mathcal{C}, \ \text{then} \ \{x^t\}_{t>0} \subseteq \operatorname{ri} \mathcal{C}.$$

$$\triangleright$$
 If $\mathcal{K} = \mathbb{R}^n_+$, then $x = \sum_{i=1}^n x_i e_i$:

$$\begin{array}{ll} \text{Input}: & x^0 \in \mathsf{ri}\,\mathcal{C} \ (:= \mathsf{int}\,\mathcal{K} \cap \{x: \mathrm{tr}(x) = 1\}) \\ \text{Iterate}: & \hat{x}^{t+1} := \exp\{\ln(x^t) + \ln(\theta^{-1}\nabla F(x^t))\}, \\ & x^{t+1} := \hat{x}^{t+1}/\mathrm{tr}(\hat{x}^{t+1}). \\ \text{Output}: & \bar{x}^T := (1/T)\sum_{t=0}^{T-1} x^t \end{array}$$

(GMG)

$$For \ x = \sum_{i=1}^{n} \lambda_i(x) q_i(x) \in \operatorname{int} \mathcal{K}:$$
$$\exp(x) = \sum_{i=1}^{n} \exp(\lambda_i(x)) q_i(x), \quad \ln(x) = \sum_{i=1}^{n} \ln(\lambda_i(x)) q_i(x),$$

 $\triangleright \text{ If } x^0 \in \mathsf{ri}\,\mathcal{C}, \text{ then } \{x^t\}_{t \geq 0} \subseteq \mathsf{ri}\,\mathcal{C}.$

$$Figure Matrix Interpretation Inte$$

$$\begin{array}{lll} \text{Input}: & x^{0} \in \mathsf{ri}\,\mathcal{C} \ (:= \mathsf{int}\,\mathcal{K} \cap \{x: \mathrm{tr}(x) = 1\}) \\ \text{Iterate}: & \hat{x}^{t+1} := \exp\{\ln(x^{t}) + \ln(\theta^{-1}\nabla F(x^{t}))\}, \\ & x^{t+1} := \hat{x}^{t+1}/\mathrm{tr}(\hat{x}^{t+1}). \\ \text{Output}: & \bar{x}^{T} := (1/T)\sum_{t=0}^{T-1} x^{t} \end{array}$$

(GMG)

$$For \ x = \sum_{i=1}^{n} \lambda_i(x) q_i(x) \in \operatorname{int} \mathcal{K}:$$
$$\exp(x) = \sum_{i=1}^{n} \exp(\lambda_i(x)) q_i(x), \quad \ln(x) = \sum_{i=1}^{n} \ln(\lambda_i(x)) q_i(x),$$

 $\triangleright \text{ If } x^0 \in \mathsf{ri}\,\mathcal{C}, \, \text{then} \, \, \{x^t\}_{t \geq 0} \subseteq \mathsf{ri}\,\mathcal{C}.$

$$\begin{array}{l} \triangleright \quad \text{If } \mathcal{K} = \mathbb{R}^n_+, \text{ then } x = \sum_{i=1}^n x_i e_i: \\ \bullet \quad \text{both } \exp(\cdot) \text{ and } \ln(\cdot) \text{ are element-wise} \Longrightarrow \hat{x}^{t+1} = x^t \circ \nabla F(x^t)/\theta, \forall i \in [n] \\ \bullet \quad \text{tr}(\hat{x}^{t+1}) = \langle \nabla F(x^t), x^t \rangle/\theta = 1 \text{ (since } F \text{ is 1-LH)} \end{array}$$

$$\begin{array}{lll} \text{Input}: & x^{0} \in \mathsf{ri}\,\mathcal{C} \ (:= \mathsf{int}\,\mathcal{K} \cap \{x: \mathrm{tr}(x) = 1\}) \\ \text{Iterate}: & \hat{x}^{t+1} := \exp\{\ln(x^{t}) + \ln(\theta^{-1}\nabla F(x^{t}))\}, \\ & x^{t+1} := \hat{x}^{t+1}/\mathrm{tr}(\hat{x}^{t+1}). \\ \text{Output}: & \bar{x}^{T} := (1/T)\sum_{t=0}^{T-1} x^{t} \end{array}$$

(GMG)

$$For \ x = \sum_{i=1}^{n} \lambda_i(x) q_i(x) \in \operatorname{int} \mathcal{K}:$$
$$\exp(x) = \sum_{i=1}^{n} \exp(\lambda_i(x)) q_i(x), \quad \ln(x) = \sum_{i=1}^{n} \ln(\lambda_i(x)) q_i(x),$$

 $\triangleright \text{ If } x^0 \in \mathsf{ri}\,\mathcal{C}, \text{ then } \{x^t\}_{t \ge 0} \subseteq \mathsf{ri}\,\mathcal{C}.$

 \triangleright If $\mathcal{K} = \mathbb{R}^n_+$, then $x = \sum_{i=1}^n x_i e_i$:

- both $\exp(\cdot)$ and $\ln(\cdot)$ are element-wise $\implies \hat{x}^{t+1} = x^t \circ \nabla F(x^t)/\theta, \forall i \in [n]$
- $\operatorname{tr}(\hat{x}^{t+1}) = \langle \nabla F(x^t), x^t \rangle / \theta = 1$ (since F is 1-LH)
- (GMG) becomes (MG), which only updates eigenvalues

$$\begin{array}{ll} \text{Input}: & x^{0} \in \mathsf{ri}\,\mathcal{C} \ (:= \mathsf{int}\,\mathcal{K} \cap \{x: \mathrm{tr}(x) = 1\}) \\ \text{Iterate}: & \hat{x}^{t+1} := \exp\{\ln(x^{t}) + \ln(\theta^{-1}\nabla F(x^{t}))\}, \\ & x^{t+1} := \hat{x}^{t+1}/\mathrm{tr}(\hat{x}^{t+1}). \\ \text{Output}: & \bar{x}^{T} := (1/T)\sum_{t=0}^{T-1} x^{t} \end{array}$$

(GMG)

$$For \ x = \sum_{i=1}^{n} \lambda_i(x) q_i(x) \in \operatorname{int} \mathcal{K}:$$
$$\exp(x) = \sum_{i=1}^{n} \exp(\lambda_i(x)) q_i(x), \quad \ln(x) = \sum_{i=1}^{n} \ln(\lambda_i(x)) q_i(x),$$

 $\triangleright \text{ If } x^0 \in \mathsf{ri}\,\mathcal{C}, \text{ then } \{x^t\}_{t \ge 0} \subseteq \mathsf{ri}\,\mathcal{C}.$

 \triangleright If $\mathcal{K} = \mathbb{R}^n_+$, then $x = \sum_{i=1}^n x_i e_i$:

- both $\exp(\cdot)$ and $\ln(\cdot)$ are element-wise $\implies \hat{x}^{t+1} = x^t \circ \nabla F(x^t)/\theta, \forall i \in [n]$
- $\operatorname{tr}(\hat{x}^{t+1}) = \langle \nabla F(x^t), x^t \rangle / \theta = 1$ (since F is 1-LH)
- (GMG) becomes (MG), which only updates eigenvalues
- ▷ In general, (GMG) updates both eigenvalues and the Jordan frame, and specializes to all the methods we've seen earlier.

$$\begin{array}{ll} \mbox{Input}: & x^0 \in {\sf ri}\,\mathcal{C} \\ \mbox{Iterate}: & \hat{x}^{t+1}:= \exp\big(\ln(x^t) + \ln(\theta^{-1}\nabla F(x^t))\big), \\ & x^{t+1}:= \hat{x}^{t+1}/{\rm tr}(\hat{x}^{t+1}). \\ \mbox{Output}: & \bar{x}^T:= (1/T)\sum_{t=0}^{T-1} x^t \end{array}$$

(GMG)

$$\begin{array}{lll} {\rm Input}: & x^0 \in {\sf ri}\, {\mathcal C} \\ {\rm Iterate}: & \hat{x}^{t+1} := \exp \big(\ln(x^t) + \ln(\theta^{-1} \nabla F(x^t))\big), \\ & x^{t+1} := \hat{x}^{t+1}/{\rm tr}(\hat{x}^{t+1}). \\ {\rm Output}: & \bar{x}^T := (1/T) \sum_{t=0}^{T-1} x^t \end{array}$$

(GMG)

Theorem (Convergence rate of (GMG))

$$F^* - F(\bar{x}^T) \le \frac{\theta \ln \lambda_{\min}^{-1}(x^0)}{T}, \qquad \forall T \ge 1.$$

$$\begin{array}{ll} \text{Input}: & x^0 \in \mathsf{ri}\,\mathcal{C} \\ \text{Iterate}: & \hat{x}^{t+1} := \exp\big(\ln(x^t) + \ln(\theta^{-1}\nabla F(x^t))\big), \\ & x^{t+1} := \hat{x}^{t+1}/\text{tr}(\hat{x}^{t+1}). \\ \text{Output}: & \bar{x}^T := (1/T)\sum_{t=0}^{T-1} x^t \end{array}$$

(GMG)

Theorem (Convergence rate of (GMG))

$$F^* - F(\bar{x}^T) \le \frac{\theta \ln \lambda_{\min}^{-1}(x^0)}{T}, \qquad \forall T \ge 1.$$

 $\,\triangleright\,$ The convergence rate is data independent — it does not depend on A.

$$\begin{array}{ll} \text{Input}: & x^0 \in \mathsf{ri}\,\mathcal{C} \\ \text{Iterate}: & \hat{x}^{t+1} := \exp\big(\ln(x^t) + \ln(\theta^{-1}\nabla F(x^t))\big), \\ & x^{t+1} := \hat{x}^{t+1}/\text{tr}(\hat{x}^{t+1}). \\ \text{Output}: & \bar{x}^T := (1/T)\sum_{t=0}^{T-1} x^t \end{array}$$

(GMG)

Theorem (Convergence rate of (GMG))

$$F^* - F(\bar{x}^T) \le \frac{\theta \ln \lambda_{\min}^{-1}(x^0)}{T}, \qquad \forall T \ge 1.$$

 \triangleright The convergence rate is data independent — it does not depend on A.

 \triangleright The optimal choice for the above bound is $x^0 = (1/n)e$, and we have

$$F^* - F(\bar{x}^T) \le \frac{\theta \ln(n)}{T}, \qquad \forall T \ge 1$$

(Recall that n is the rank of the EJA associated with \mathcal{K} .)

The Class of Gradient Log-Convex Functions

Let $\operatorname{PI}(\mathbb{V}) := \{x \in \mathbb{V} : x^2 = x, \operatorname{tr}(x) = 1\}$ be the primitive idempotents in \mathbb{V} . We call $F : \mathcal{K} \to \mathbb{R} \cup \{-\infty\}$ in (P) log-gradient convex if $\forall u \in \operatorname{PI}(\mathbb{V}), \quad x \mapsto \langle \ln \nabla F(x), u \rangle$ is convex on int \mathcal{K} (GLC)

Recall that $F = f \circ A$, some examples of f that satisfy (GLC):

The Class of Gradient Log-Convex Functions

Let $\operatorname{PI}(\mathbb{V}) := \{x \in \mathbb{V} : x^2 = x, \operatorname{tr}(x) = 1\}$ be the primitive idempotents in \mathbb{V} .

We call $F : \mathcal{K} \to \mathbb{R} \cup \{-\infty\}$ in (P) log-gradient convex if $\forall u \in \operatorname{PI}(\mathbb{V}), \quad x \mapsto \langle \ln \nabla F(x), u \rangle$ is convex on int \mathcal{K} (GLC)

Recall that $F = f \circ A$, some examples of f that satisfy (GLC):

 $\triangleright \mathcal{K} = \mathbb{R}^n_+$ and Γ is the closure of the hyperbolicity cone associated with a *complete* hyperbolic polynomial $p : \mathbb{Y} \to \mathbb{R}$, then

$$f(y) = \ln p(y), \quad \forall \, y \in \operatorname{int} \Gamma$$

(includes PET and D-OPT).

The Class of Gradient Log-Convex Functions

Let $\operatorname{PI}(\mathbb{V}) := \{x \in \mathbb{V} : x^2 = x, \operatorname{tr}(x) = 1\}$ be the primitive idempotents in \mathbb{V} .

We call $F : \mathcal{K} \to \mathbb{R} \cup \{-\infty\}$ in (P) log-gradient convex if

 $\forall u \in \mathrm{PI}(\mathbb{V}), \quad x \mapsto \langle \ln \nabla F(x), u \rangle \quad \text{is convex on int } \mathcal{K} \tag{GLC}$

Recall that $F = f \circ A$, some examples of f that satisfy (GLC):

 $\triangleright \mathcal{K} = \mathbb{R}^n_+$ and Γ is the closure of the hyperbolicity cone associated with a *complete* hyperbolic polynomial $p : \mathbb{Y} \to \mathbb{R}$, then

$$f(y) = \ln p(y), \quad \forall \, y \in \operatorname{int} \Gamma$$

(includes PET and D-OPT).

 $\triangleright \mathcal{K}$ is any *representable* symmetric cone and $\Gamma = \mathbb{R}^m_+$, then

- $f(y) = \sum_{j=1}^{m} w_j \ln y_j$, for all y > 0 and $w \in ri \Delta_m$ (includes QST).
- $f(y) = \ln |||y|||_p$, for all y > 0 and $p \in (0, 1]$ (includes RBQP).

Thank you!

Lemma 1 (An important conic inequality)

For all $t \ge 0$, we have $\operatorname{tr}(\hat{x}^{t+1}) \le 1$ and hence

 $\ln(x^{t+1}) \succeq_{\mathcal{K}_1} \ln(x^t) + \ln(\nabla F(x^t)).$

Lemma 1 (An important conic inequality)

For all $t \ge 0$, we have $\operatorname{tr}(\hat{x}^{t+1}) \le 1$ and hence

 $\ln(x^{t+1}) \succeq_{\mathcal{K}_1} \ln(x^t) + \ln(\nabla F(x^t)).$

This inequality essentially follows from the Golden-Thompson inequality for EJA in Tao et al. [TWK21].

To telescope, need the assumption that $\ln \nabla F(\cdot)$ is convex on $\mathsf{ri} \mathcal{C}$ (w.r.t. \mathcal{K}_1).

Lemma 2 (A growth bound of F)

For any $x \in ri \mathcal{C}$ and any optimal solution x^* , $F^* - F(x) \leq \ln(\langle \nabla F(x), x^* \rangle)$.

Lemma 1 (An important conic inequality)

For all $t \ge 0$, we have $\operatorname{tr}(\hat{x}^{t+1}) \le 1$ and hence

 $\ln(x^{t+1}) \succeq_{\mathcal{K}_1} \ln(x^t) + \ln(\nabla F(x^t)).$

This inequality essentially follows from the Golden-Thompson inequality for EJA in Tao et al. [TWK21].

To telescope, need the assumption that $\ln \nabla F(\cdot)$ is convex on ri \mathcal{C} (w.r.t. \mathcal{K}_1).

Lemma 2 (A growth bound of F)

For any $x \in \operatorname{ri} \mathcal{C}$ and any optimal solution x^* , $F^* - F(x) \leq \ln(\langle \nabla F(x), x^* \rangle)$. This bound is solely due to the 1-log-homogeneity of F.

Lemma 1 (An important conic inequality)

For all $t \ge 0$, we have $\operatorname{tr}(\hat{x}^{t+1}) \le 1$ and hence

 $\ln(x^{t+1}) \succeq_{\mathcal{K}_1} \ln(x^t) + \ln(\nabla F(x^t)).$

This inequality essentially follows from the Golden-Thompson inequality for EJA in Tao et al. [TWK21].

To telescope, need the assumption that $\ln \nabla F(\cdot)$ is convex on ri \mathcal{C} (w.r.t. \mathcal{K}_1).

Lemma 2 (A growth bound of F)

For any $x \in \operatorname{ri} \mathcal{C}$ and any optimal solution x^* , $F^* - F(x) \leq \ln(\langle \nabla F(x), x^* \rangle)$. This bound is solely due to the 1-log-homogeneity of F.

References

- [Ari72] S. Arimoto. "An algorithm for computing the capacity of arbitrary discrete memoryless channels". In: *IEEE Trans. Inf. Theory* 18.1 (1972), pp. 14–20.
- [BBT17] Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications". In: Math. Oper. Res. 42.2 (2017), pp. 330–348.
- [Coh19] Michael B. Cohen et al. A near-optimal algorithm for approximating the John Ellipsoid. arXiv:1905.11580. 2019.
- [Cov84] T. Cover. "An algorithm for maximizing expected log investment return". In: IEEE Trans. Inf. Theory 30.2 (1984), pp. 369–373.
- [Dvu20] Pavel Dvurechensky et al. "Self-Concordant Analysis of Frank-Wolfe Algorithms". In: Proc. ICML. 2020, pp. 2814–2824.
- [Fed72] V. V. Fedorov. Theory of Optimal Experiments. Academic Press, 1972.
- [Hra04] Zdeněk Hradil et al. "Maximum-Likelihood Methodsin Quantum Mechanics". In: Quantum State Estimation. Springer Berlin Heidelberg, 2004, pp. 59–112.
- [LCL21] Chien-Ming Lin, Hao-Chung Cheng, and Yen-Huan Li. Maximum-Likelihood Quantum State Tomography by Cover's Method with Non-Asymptotic Analysis. arXiv:2110.00747. 2021.
- [LFN18] Haihao. Lu, Robert M. Freund, and Yurii. Nesterov. "Relatively Smooth Convex Optimization by First-Order Methods, and Applications". In: SIAM J. Optim. 28.1 (2018), pp. 333–354.
- [Nes11] Y. Nesterov. "Barrier subgradient method". In: Math. Program. (2011), 31-56.

References

[Nes98]	Yu. Nesterov. "Semidefinite relaxation and nonconvex quadratic optimization". In:
	Optim. Methods Softw. 9.1-3 (1998), pp. 141–160.

- [Tod16] Michael J. Todd. Minimum volume ellipsoids theory and algorithms. Vol. 23. SIAM, 2016.
- [TWK21] J. Tao, G. Q. Wang, and L. Kong. "The Araki-Lieb-Thirring inequality and the Golden-Thompson inequality in Euclidean Jordan algebras". In: *Linear Multilinear Algebra* 0.0 (2021), pp. 1–16.
- [ZF20] Renbo Zhao and Robert M. Freund. Analysis of the Frank-Wolfe Method for Convex Composite Optimization involving a Logarithmically-Homogeneous Barrier. arXiv:2010.08999. 2020.
- [Zha23] Renbo Zhao. "Convergence Rate Analysis of the Multiplicative Gradient Algorithm for PET-Type Problems". In: Oper. Res. Lett. 51.1 (2023), 26 — 32.
- [ZZS13] Ke Zhou, Hongyuan Zha, and Le Song. "Learning Social Infectivity in Sparse Low-rank Networks Using Multi-dimensional Hawkes Processes". In: Proc. AISTATS. 2013, pp. 641–649.