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Motivating Example: Positron Emission Tomography

max,en, {F(:c) = Dy ln(a;x)} (PET)

> Known as Positron Emission Tomography (PET) in medical imaging, but
has many other applications, e.g., inference of multi-dimensional Hawkes
processes [ZZS13] and log-optimal investment [Cov84].

> For all j € [m], let p; >0, a; € R}, a; # 0 and Z;n:ﬂ’j =1.
> Api={zeR}:Y " x =1} is the unit simplex in R™.
> Multiplicative gradient method: z2° € ri A,

et =20 VF(2') = 2T i=2lV,F(a), Vien. (MG)

> (MG) does not fall under any “well-known” optimization frameworks,
e.g., Newton-type method, mirror descent, etc.
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The Mystery of MG

maX,ea, {F(:c) = Z;nzl D ln(a;x)} (PET)
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> Originally proposed by information theorists in the 1970s [Ari72] based on
the EM procedure.
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The Mystery of MG

maxgeA,, T) = 1Py na;x
an {F@) =57 pyIn(a] o)} (PET)

22 eri,, 2 =zt o VF(2?) ‘ (MG)

> Originally proposed by information theorists in the 1970s [Ari72] based on
the EM procedure.

> Impressive numerical performance: z° = (1/n)e

FW-A & FW-E [Dvu20; ZF20]: Frank-

M Wolfe (FW) method for logarithmically-
T 14 homogeneous self-concordant barriers
—_ (with adaptive stepsize and exact line
i\‘. o search)
=25
U,E RSGM-F & RSGM-LS [BBT17; LFN18]:
o Relatively smooth gradient method

) (with fixed stepsize and backtracking

20 25 30 35 40 45 line search)
log1o(k)
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F* = maxen,, {F(w) =0 D ln(a;-'—x)} (PET)

> However, MG only has asymptotic convergence guarantees, and the
convergence rate has been unknown for about 50 years.
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The Mystery of MG

F* = maxen,, {F(m) =0 D ln(a;-rx)} (PET)

> However, MG only has asymptotic convergence guarantees, and the
convergence rate has been unknown for about 50 years.
> Zhao [Zha23] showed that (MG) has the following convergence rate:
F* — F(2") <1In(n)/t, Vi > 1.
The proof is relatively short, and is based on basic convex analysis.
> But immediately some questions arose:

® Why does (MG) work for PET?

® What are the essential structures of the problem the drive the success
of (MG)? Is there a general problem class that (MG) works well?

® And what is the interaction between the complexity of (MG) and the
problem structure?

Renbo Zhao (Tippie Ulowa)



Our Main Contributions

> We identify a broad problem class and develop a generalization of the MG
method, with computational guarantees.
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Our Main Contributions

> We identify a broad problem class and develop a generalization of the MG
method, with computational guarantees.

> To facilitate understanding, we first show our results when they are
specialized to the following applications:
® D-optimal design
® Quantum state tomography

® Semidefinite relaxation of Boolean QP

> In all of these applications, the objective functions involve “In(-)”, and
hence are neither Lipschitz nor smooth (i.e., have Lipschitz gradients) on
the feasible sets.

> Certain first-order methods for these applications have been developed
recently [Nesll; BBT17; LEN18; Dvu20; ZF20] — our generalized MG
method contributes to this line of research from a different viewpoint.
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D-Optimal Design (D-OPT)

max, F(z) :=1Indet (Y|, za;a] ) s.t. z €A, (D-OPT)

> ai,...,a, € R™ whose linear span is R™.

> In statistics, D-OPT corresponds to maximizing the the determinant of
the Fisher information matrix [Fed72].

> In computational geometry, D-OPT arises as a Lagrangian dual problem
of the minimum volume enclosing ellipsoid problem [Tod16].

> MG method:

2 erA,, T =zto(mTIVF(zh)) ‘
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Quantum State Tomography (QST)

maxx F(X):=m™" 3 1_ n;In((X, a;af")) (QST)
s.t. XeH}, tr(X)=1

> In quantum physics, this problem aims to reconstruct the state of a
quantum system using the measured output of particles [Hra04].

> ay,...,0q € cr, Z?:l ajaf = I, and Z?:l nj =m.

> H denotes the cone of n X n complex Hermitian PSD matrices.

> (Generalized) MG method: X° = 0, tr(XY) =1,

Xt = exp{In(X?) + In(VF(X*))}
Xt+1 — Xt+1/tr(Xt+1)

(For any X = 31" | iwjull = 0, In(X) == In(\;)w;ul )

7
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Semidefinite Relaxation of Boolean QP (RBQP)

> The Boolean QP (BQP): ¢* := max ¢ 413n 2T Az for some A > 0.

> Nesterov [Nes98] showed that the semidefinite relaxation
s* :=min, (e,y) s.t. Diag(y) = A (SDP)
provides a (2/7)-approximation of the BQP.
> Nesterov [Nesll] later showed that (SDP) above can be equivalently
written in the dual form:
n 2
maxy F(X):=1In (Zi:1<X, n—r;r>1/2) (RBQP)
s.t. X eSS, tr(X) =1

where A=R"R and R:=[ry --- 1], and S" denotes the cone of n x n
real symmetric PSD matrices.
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> The Boolean QP (BQP): ¢* := max ¢ 413n 2T Az for some A > 0.

> Nesterov [Nes98] showed that the semidefinite relaxation
s* :=min, (e,y) s.t. Diag(y) = A (SDP)
provides a (2/7)-approximation of the BQP.

> Nesterov [Nesll] later showed that (SDP) above can be equivalently

written in the dual form:
n 2
maxy F(X):=In (30 (X,rr])?) (RBQP)
s.t. X eSS, tr(X) =1

where A=R"R and R:=[ry --- 1], and S" denotes the cone of n x n
real symmetric PSD matrices.

> MG method: X° > 0, tr(X?) =1,

X = exp{In(X?) + In(VF(X"))}
Xt+1 — Xt+1/tr(Xt+1)
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Comparison of Computational Guarantees

RSGM [BBT17; LFN18]: Relatively smooth gradient method
FW [Dvu20; ZF20]: FW method for logarithmically-homogeneous self-concordant barriers

MG: (Generalized) Multiplicative gradient method (this work)

BSG [Nesl1]: Barrier subgradient method

Table 1: Comparison of operations complexities (with 2° = (1/n)e or X° = (1/n)I,,)
RSGM FW MG BSG Regime
PET | O(m22in () |o(m2e) | o(zr2m) | o242 0% (2)) |n = O(exp(m))
070 (=2 (202 [ (222 [o(2220) o (w22 1 (=)
QST x? o(m2n2) |o(m22tm) | o (ma® 1n2 (2)) |n = O(exp(m))
RBQP x? x? o= | oz m? (2))

t [Coh19] t [LCL21]
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A General Problem Class

max F(x):= f(Ax)
s.t. zelC:={zxek:tr(z) =1}
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> Let I' be a regular cone in a (finite-dimensional) real vector space Y, and
f:T' - RU{—o0} is a closed and strictly concave function:

® intl' C dom f CT'\ {0}, and dom f invariant under positive scaling.
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A General Problem Class

max F(z):= f(Az)
s.t. zeC:={zek:tr(z)=1} (P)

> Let I' be a regular cone in a (finite-dimensional) real vector space Y, and
f:T = RU{—00} is a closed and strictly concave function:
® intl' C dom f CT'\ {0}, and dom f invariant under positive scaling.
e fis C® and #-logarithmically-homogeneous (/-LH) on intT":
flty) = f(y) + Int, Vyeintl, Vi > 0.

® Vf:intl— intT™*

> K CV is a symmetric cone, where V is a real inner-product space:

® gself-dual: £ = K*
® homogeneous: for all z,y € int K, there exists a (linear) automorphism T
on K such that Tz =y
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A General Problem Class

max F(z):= f(Az)
s.t. zeC:={zek:tr(x) =1}

> For x € V, tr(z) denotes the “trace” of x:
* V=R" K=R}, tr(z) =) @i
¢ V=8 K=8, tr(X) = 2" M(X)

> A:V — Y is a linear operator such that
A(int ) CintI' and A*(intT") Cint .

> Under these conditions, we know that VF : int I — int KC.

> Finally, we require F to be log-gradient convex (more details later).

Renbo Zhao (Tippie Ulowa)



Basics of Euclidean Jordan Algebra (EJA)

> We call (V,0) a Jordan algebra (over R) with rank n if

Renbo Zhao (Tippie Ulowa)



Basics of Euclidean Jordan Algebra (EJA)

> We call (V,0) a Jordan algebra (over R) with rank n if

® V is a real vector space

Renbo Zhao (Tippie Ulowa)



Basics of Euclidean Jordan Algebra (EJA)

> We call (V,0) a Jordan algebra (over R) with rank n if
® V is a real vector space
® 0:V xV — Visa bilinear map on V such that

zoy=yox, z°o(zoy)=uzxzo(zoy), Vz,yeV.

Renbo Zhao (Tippie Ulowa)



Basics of Euclidean Jordan Algebra (EJA)

> We call (V,0) a Jordan algebra (over R) with rank n if
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Basics of Euclidean Jordan Algebra (EJA)

> We call (V,0) a Jordan algebra (over R) with rank n if

® V is a real vector space
® 0:V xV — Visa bilinear map on V such that
roy=1youm, x2o(:voy):xo(a:20y), Vz,y€e V.

® V has an identity element e (so that xoe =eoz = x).

> Each x € V has n eigenvalues {\;(x)}7;, and
tr(z) ==Y Ni(z) €R.

> We call (V, o) Euclidean if tr(z?) > 0 for x # 0, and we can define an
inner product (z,y) := tr(z o y) that is associative:
(

(xoy,z):=(z,yoz), Va,y,z€V.
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Spectral Decomposition

> Any z in a EJA V has a spectral decomposition z = Y1 | \;(z)q;(z):

® the eigenvalues {\;(z)}i—; are real

® {gi(x)}iz1 CVis called a Jordan frame.
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Spectral Decomposition

> Any z in a EJA V has a spectral decomposition z = Y1 | \;(z)q;(z):

® the eigenvalues {\;(z)}iL, are real
® {gi(x)}iz1 CVis called a Jordan frame.

> A Jordan frame {¢;}?; C V satisfy

® (Complete) " qi=e
® (Orthogonal) gi 0 q; =0, Vi#j, i,j € [n],
® (Primitive Idempotents) ¢7 = ¢; and tr(g;) = 1, Vi € [n]

> For any univariate function f, f(z) := >, f(\i(z))gi(x) for z € V.

Connection between symmetric cones and EJA:

For each symmetric cone IC, there exists a unique EJA V
such that K := {22 : x € V} and

>z e <= A(x),....,. \x(z) >0
>z €intk < A\ (z),..., A\ () >0
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Generalized MG Method

Input: 2° €riC (:=intKN{z:tr(z) =1})
Iterate : 2" := exp{In(z’) + In(A~'VF(z"))},
= T (2P,

Output :  z7 := (1/T) Zz:ol xt

(GMG)

Renbo Zhao (Tippie Ulowa)



Generalized MG Method

Input: 2° €riC (:=intKN{z:tr(z) =1})
Iterate : 2" := exp{In(z’) + In(A~'VF(z"))},
= T (2P,

Output :  z7 := (1/T) Zz:ol xt

(GMG)

> For oz = > , Ni(x)gi(z) € intK:
exp(z) = 311, exp(Ai(@))ai(z), In(z) =327, In(Ni(2))g (@),




Generalized MG Method

Input: 2° €riC (:=intKN{z:tr(z) =1})
Iterate : 2" := exp{In(z’) + In(A~'VF(z"))},
= T (2P,

Output :  z7 := (1/T) Zz:ol xt

(GMG)

> For oz = > , Ni(x)gi(z) € intK:
exp(z) = 311, exp(Ai(@))ai(z), In(z) =327, In(Ni(2))g (@),

> If 2° € riC, then {a'};>¢ C riC.




Generalized MG Method

Input: 2° €riC (:=intKN{z:tr(z) =1})
Iterate : 2" := exp{In(z’) + In(A~'VF(z"))},
= T (2P,

Output :  z7 := (1/T) Zz:ol xt

(GMG)

> For oz = > , Ni(x)gi(z) € intK:
exp(z) = 311, exp(Ai(@))ai(z), In(z) =327, In(Ni(2))g (@),
> If 2° € riC, then {a'};>¢ C riC.

> If K = R%, then x = S wie

Renbo Zhao (Tippie Ulowa)



Generalized MG Method

Input: 2° €riC (:=intKN{z:tr(z) =1})
Iterate : 2" := exp{In(z’) + In(A~'VF(z"))},
= T (2P,

Output :  z7 := (1/T) Zz:ol xt

(GMG)

> For oz = > , Ni(x)gi(z) € intK:
exp(z) = 311, exp(Ai(@))ai(z), In(z) =327, In(Ni(2))g (@),
> If 2° € riC, then {a'};>¢ C riC.

> If K = R%, then x = S wie
® both exp(:) and In(-) are element-wise = &'T! = 2 0 VF(2")/0, Vi € [n]

Renbo Zhao (Tippie Ulowa)



Generalized MG Method

Input: 2° €riC (:=intKN{z:tr(z) =1})
Iterate : 2" := exp{In(z’) + In(A~'VF(z"))},
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Generalized MG Method

Input: 2° €riC (:=intKN{z:tr(z) =1})
Iterate : 2'"! := exp{In(z") + In(6~'VF(z"))},

t+1 = xt“/tr( t—&-l). (GMG>

xT

Output : = (1/T) Zt ozt

> For oz = > , Ni(x)gi(z) € intK:
exp(z) = 311, exp(Ai(@))ai(z), In(z) =327, In(Ni(2))g (@),

> If 2° € riC, then {a'};>¢ C riC.

> If K = R%, then x = Z;;l Ti€;:
® both exp(-) and ln( ) are element-wise => &'7! = 2 0 VF(2")/0, Vi € [n]
o tr(3') = (VF(a?),2")/0 = 1 (since F is 1-LH)
® (GMG) becomes (MG), which only updates eigenvalues

> In general, (GMG) updates both eigenvalues and the Jordan frame, and
specializes to all the methods we’ve seen earlier.
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Convergence Rate of (GMG)

Input : 2% €riC
Iterate : &' := exp (In(z") + In(6~'VF(2"))),
o= 2 (2.

Output : 7 := (1/T) ¥}, '

(GMG)
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Convergence Rate of (GMG)

Input : 2% €riC
Iterate : &' := exp (In(z") + In(6~'VF(2"))),
= (2.

Output : 7 := (1/T) ¥}, '

(GMG)

Theorem (Convergence rate of (GMG))
< OIn X1 (z0)

min

T>1.
< T A

F*— F(zT)
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Output : 7 := (1/T) ¥}, '
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Theorem (Convergence rate of (GMG))
< OIn X1 (z0)
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> The convergence rate is data independent — it does not depend on A.
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Convergence Rate of (GMG)

Input : 2% €riC

Iterate : &' := exp (In(z") + In(6~'VF(2"))),

t+1 = i,t—&-l/tr(/\t-i-l) (GMG)

X

Output : =(1/T) Zt oz

Theorem (Convergence rate of (GMG))

1
Fr— FET) < 91“#“() VT > 1.

> The convergence rate is data independent — it does not depend on A.
> The optimal choice for the above bound is 2° = (1/n)e, and we have
|
F*—F(a‘:T)gonT(”), VT >1

(Recall that n is the rank of the EJA associated with KC.)
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The Class of Gradient Log-Convex Functions

Let PI(V) := {z € V: 2% = z,tr(x) = 1} be the primitive idempotents in V.
We call F: K — RU{—o0} in (P) log-gradient convez if
Yu € PI(V), 2z~ (InVF(z),u) is convex on int/C (GLC)

Recall that F' = f o A, some examples of f that satisfy (GLC):
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> K =R7 and I is the closure of the hyperbolicity cone associated with a
complete hyperbolic polynomial p : Y — R, then

fly) =Inp(y), Yye€intl
(includes PET and D-OPT).
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The Class of Gradient Log-Convex Functions

Let PI(V) := {z € V: 2% = z,tr(x) = 1} be the primitive idempotents in V.
We call F: K — RU{—o0} in (P) log-gradient convez if
Yu € PI(V), 2z~ (InVF(z),u) is convex on int/C (GLC)

Recall that F' = f o A, some examples of f that satisfy (GLC):

> K =R7 and I is the closure of the hyperbolicity cone associated with a
complete hyperbolic polynomial p : Y — R, then

fly) =Inp(y), VyeintD
(includes PET and D-OPT).
> K is any representable symmetric cone and I' = R, then

® fly)=>"7", wilny;, forally >0 and w € ri Ay, (includes QST).
* f(y) =In|lyll,, for all y > 0 and p € (0,1] (includes RBQP).
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Thank you!




Proof Sketch

Lemma 1 (An important conic inequality)

For all t > 0, we have tr(2'71) <1 and hence

In(z') =k, In(z!) + In(VE(2)).
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Proof Sketch

Lemma 1 (An important conic inequality)
For all t > 0, we have tr(2'71) <1 and hence
In(z') =k, In(z!) + In(VE(2)).

This inequality essentially follows from the Golden-Thompson inequality for
EJA in Tao et al. [TWK21].

To telescope, need the assumption that In VF(-) is convex on riC (w.r.t. Kq).
Lemma 2 (A growth bound of F')

For any x € riC and any optimal solution x*, F* — F(x) < In((VF(x),x*)).
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This bound is solely due to the 1-log-homogeneity of F'.
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